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ABSTRACT

Cis2-His2 zinc finger (C2H2-ZF) proteins are the
largest family of transcription factors in human
and higher metazoans. To date, the DNA-binding
preferences of many members of this family re-
main unknown. We have developed a computational
method to predict their DNA-binding preferences. We
have computed theoretical position weight matrices
(PWMs) of proteins composed by C2H2-ZF domains,
with the only requirement of an input structure. We
have predicted more than two-third of a single zinc-
finger domain binding site for about 70% variants of
Zif268, a classical member of this family. We have
successfully matched between 60 and 90% of the
binding-site motif of examples of proteins composed
by three C2H2-ZF domains in JASPAR, a standard
database of PWMs. The tests are used as a proof of
the capacity to scan a DNA fragment and find the po-
tential binding sites of transcription-factors formed
by C2H2-ZF domains. As an example, we have tested
the approach to predict the DNA-binding preferences
of the human chromatin binding factor CTCF. We of-
fer a server to model the structure of a zinc-finger
protein and predict its PWM.

INTRODUCTION

Despite that physical interactions of transcription factors
(TFs) with DNA do not always confer a regulatory con-
sequence (1,2), their identification and the characterization

of binding sites is still key to understand how gene expres-
sion is regulated. Experimental techniques, such as ChIP
(3), PBM (4), HT-SELEX (5), MPRA (6) or bacterial and
yeast one-hybrid (7,8) have allowed the characterization of
TF-binding sites at large-scale. However, experimental tech-
niques are expensive and time consuming, and yet the bind-
ing preferences of many TFs remain unknown (9,10). Given
the current limitations, the usage of computational tools to
complement experimental techniques is necessary.

Cis2-His2 zinc finger (C2H2-ZF) proteins are the largest
family of TFs in higher metazoans (11). They represent
around the 45% of all known human TFs, being the largest
TF family in humans (10). C2H2-ZF proteins are involved
in a wide range of biological processes, such as develop-
ment (12) or chromatin compartmentalization (13). C2H2-
ZF proteins have been related to many diseases (14,15) and
can be used as tools for precise gene editing (16,17). At this
point, knowing the binding preferences of C2H2-ZF pro-
teins becomes crucial, despite for many are yet unknown
(10). Besides, many members of the C2H2-ZF do not have
close homologs across metazoans and thus, sequence ho-
mology cannot be used to infer their binding preferences
(18). Still, all members of this family have the same struc-
ture in the DNA binding domain. DNA binding domains
(DBD) of C2H2-ZF proteins are composed by small do-
mains called zinc fingers arranged in tandem (19). Each zinc
finger is able to recognize DNA sequences of 3 nt (20) and,
by combining adjacent zinc fingers, C2H2-ZF proteins are
able to recognize long and complex DNA patterns (21). Hu-
man C2H2-ZF proteins contain an average of around 10
domains, leading to binding sites of about 30 bases (22).
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Several computational tools have been developed to pre-
dict the binding preferences of TFs and in particular C2H2-
ZF proteins. Some tools are based on combining experi-
mental data with the structure of the interaction between
proteins and DNA. Among them, some approaches use dif-
ferent machine learning algorithms: random forest regres-
sion (18), support vector machines (23,24), single layer per-
ceptrons (25), hidden Markov models (26) and other statis-
tical models (27,28); using residue–residue contacts (18,23–
24,28) or context dependencies and sequence similarities
(25–26,29–30). Other tools are based on the analysis of the
structural patterns extracted from protein–DNA interac-
tions (27,31–34), or from the accessibility (35) and the flex-
ibility (36) on the DNA chain. Some of these structure-
based tools use statistical potentials (33,34). Statistical po-
tentials (also known as knowledge-based potentials) are
scoring functions derived from the analysis of contacts in
a set of structures. Statistical potentials have been widely
used to evaluate the quality and the stability of protein
folds, protein–protein interactions and protein–DNA inter-
actions (37).

Here we offer a computational tool to predict the binding
preferences of C2H2-ZF proteins. We combine experimen-
tal bacterial one-hybrid (B1H) data with structural, three-
dimensional, information of TF-DNA complexes to derive
C2H2-ZF-specific statistical potentials. We use the poten-
tials to predict the position weight matrix (PWM) of the
binding-site of C2H2-ZF domains (38,39). We also predict
PWMs for proteins with three C2H2-ZF domains and com-
pare them with their motifs in the JASPAR database (40).
We apply statistical potentials to predict the binding pref-
erences of human CTCF, a transcriptional repressor with a
key role in genome compartmentalization (13).

MATERIALS AND METHODS

Software

The following software is used in this study: DSSP (ver-
sion CMBI 2006) (41) to obtain protein structural features;
X3DNA (version 2.0) (42) to analyze and generate DNA
structures; matcher and needle, from the EMBOSS package
(version 6.5.0) (43), to obtain local and global alignments,
respectively; BLAST (version 2.2.22) (44) to search ho-
mologs of a query (target) protein sequence; MODELLER
(version 9.9) (45) to construct structural models; and the
program TOMTOM from the MEME suite (46) to com-
pare two PWMs.

Databases

Atomic coordinates of protein–DNA complex structures
are retrieved from the Protein Data Bank (PDB) reposi-
tory (47). Protein codes and sequences are extracted from
UniProt (January 2019 release) (48). We generate an inter-
nal database of protein–DNA structures with all C2H2-ZF
proteins as identified in the CIS-BP database (version 1.62)
(9). DNA-binding information of the C2H2-ZF family is re-
trieved from a bacterial one-hybrid (B1H) experiments (21).
The experiment distinguishes between the inner (F2) and
C-tail (F3) C2H2-ZF domains. The experiment tests the in-
teractions of all 64 possible combinations of 3 base-pairs

(bp), which is the characteristic binding site length of indi-
vidual C2H2-ZF domains (20), against multiple large pro-
tein libraries based on Zif268, with six variable amino acid
positions in domains F2 and F3 (49).

Interface and triads of protein–DNA structures

We define triads as a type of contacts between the pro-
tein and the double-strand DNA helix. Triads consist of
one amino acid and two contiguous nucleotides (i.e. dinu-
cleotide) of the same strand. The distance associated with a
triad is defined by the distance between the C� atom of the
amino acid residue and the average position of the atoms
of the nitrogen-base of the 2 nt plus their complementary
pairs in the opposite strand of the DNA helix (37). Each
triad has an associated amino acid residue number in the
protein and a dinucleotide position in the DNA. For in-
stance, a tr iad with amino acid residue number p, dinu-
cleotide in position q and associated distance d is repre-
sented as (tr iad, d, p, q). Specific environmental features
can be added on a triad, defining an extended-triad(etriad).
For the amino acid, these features are: hydrophobicity, sur-
face accessibility and secondary structure (determined with
DSSP); and for the dinucleotide: types of nitrogenous bases,
the closest strand, the closest groove and the closest chemi-
cal group to the amino acid.

Statistical potentials

We use the definition of statistical potentials described by
Feliu et al. (50) and Fornes et al. (37) to define several scor-
ing functions for the interaction between a protein and a
DNA binding site. To calculate the statistical potentials, we
use the distribution of triads at distances up to 30 Å to cal-
culate the statistical potentials. The total potential of an in-
teraction is calculated as the sum of the potentials of all
triads, or triads with extended environmental features (etri-
ads). In the case of etriads, the completeness of the reference
dataset, basically C2H2-ZF/DNA complex structures from
the PDB, is not sufficient to sample all possible combina-
tions. We use interactions from B1H to extend the number
of interacting triads (see further details in Supplementary
Methods). Besides, we transform the statistical potentials
into Z-scores (described below), to simultaneously identify
the best distance associated with a triad and the best pair
consisting on an amino acid and a dinucleotide.

Z-scores

The optimal condition of a statistical potential often yields
a minimum. However, this minimum does not necessarily
have to be negative. The variability of signs of the potentials
affects the quality criterion of the scores. We define Z-scores
to follow a criterion that incorporates signs. The goal is that
the Z-score simultaneously identifies the best distance asso-
ciated with a triad and the best pair consisting of an amino
acid and a dinucleotide. Consequently, we construct a zs-
core function for any type of score using a standard normal-
ization with respect the average of all amino acid types (see
details in Supplementary Data).
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Structural modeling of C2H2-ZF complexes

We obtain the structure of a complex by means of homol-
ogy modeling using the program MODELLER (45). The
DNA binding sequence of a C2H2-ZF protein composed
by three zinc-finger domains has a length of 9 bp (e.g. for
Zif268). We use the same Zif268 sequences as in the B1H ex-
periment (21). For each Zif268 sequence, its complex struc-
ture with DNA is modeled with 23 different templates (see
details in the supplementary extension of methods and in
http://sbi.upf.edu/C2H2ZF repo). We complete each com-
plex by modeling the structure of the bound DNA sequence
with the program X3DNA (42). The full DNA sequence of
the experiment is 29 bp long. We embed the binding site in
positions 11–19. We also model several structures with the
complex of Zif268 binding a non-specific DNA region to be
used as non-binding examples (or background). The non-
binding sequence is obtained by randomly selecting a 9 bp
region of the weak promoter GAL1 (see details in extended
Supplementary Methods).

Use of experimental TF–DNA interactions to calculate sta-
tistical potentials

We use a mapping function that associates the amino acids
of each hexamer core sequence from the of B1H experi-
ment with the amino acids of a template structure to de-
rive interacting etriads. We use a similar mapping for the
nucleotides. For each C2H2-ZF domain (F2 and F3) and
combination of 3 nt, we collect all hexamer core sequences
producing a significant binding signal in the B1H experi-
ment (see details in Supplementary Data). Only triads af-
fecting the amino acids and nucleotides under test are con-
sidered for the calculation of statistical potentials. We re-
strict each set of Zif268 sequences to those with the highest
signal from the B1H binding experiment. Specifically, we
define three thresholds based on the affinity percentile be-
tween a hexamer core sequence and a DNA: (i) higher than
90%; (ii) higher than 75%; and (iii) higher than 50%. Affin-
ity percentiles are calculated as in the original publication
(21). We impose around 500 DNA sequences per hexamer.
A DNA binding sequence is repeated proportionally to the
number of observations in the B1H experiment. The con-
tacts derived from the B1H experiment are limited to short
distances (the furthest contacts are around 15–20Å). We in-
clude contacts extracted from other C2H2-ZF/DNA struc-
tures in the PDB to cover distances of up to 30 Å.

Scoring TF–DNA interactions

First, we calculate the TF–DNA interface and extract all
etriads at distances shorter than 30Å. Then, the score of the
interaction is defined as the sum of the scores (i.e. a specific
statistical potential) of all etriads with their associated dis-
tances. The same is applied for Z-scores. Provided that it
can be modeled, we can obtain the score of a C2H2-ZF TF
from its sequence alone (see details in supplementary).

Construction of PWMs using Zif268 structural models

Given the modeled structure of a C2H2-ZF/DNA com-
plex, we obtain the PWM using the Z-score of ES3DCdd

(ZES3DCdd , as defined in supplementary). We extract the
set of etriads up to a maximum of 30Å, with their associated
distances, amino acid and dinucleotide positions. We create
a test set with all possible nucleotide sequences of the same
length as the DNA molecule of the structure. We calculate
the score of every sequence of the test set (see details in sup-
plementary describing a heuristic approach for sequences
longer than 9 bp), and normalize the scores as follows:

normal
(
scoreseq

) = scoreseq − min
({

scoreseq
})

max
({

scoreseq
}) − min

({
scoreseq

})

Where scoreseq = −ZES3DCdd and {scoreseq} is the set
of all scores in the ‘test set’. Normalized scores range be-
tween 0 and 1. Then, we rank the normalized scores and
select the top scoring DNA sequences over a cut-off thresh-
old (i.e. 0.95). The selected sequences are used to build an
ungapped MSA, which is used to calculate the theoretical
PWM of the TF.

Construction of the experimental PWM

The experimental PWM of a Zif268 sequence from the B1H
experiment is calculated based on its affinities for different
binding sites. The DNA strand of a binding site is formed by
trinucleotides flanked by two fixed nucleotides (G and A for
F2, and two A for F3). All binding sites targeted by a spe-
cific hexamer-fragment with affinity higher than a threshold
are stored and gapless aligned without gaps to construct the
PWM (e.g. the top 20% threshold uses all binding sites with
affinity percentile higher than 80%, while for a threshold of
100% we use all detected sites with an affinity percentile that
is not null). We construct experimental PWMs for top 10%,
top 25%, top 50% and top 100% binding sites. These exper-
imental PWMs are also named hexamer-specific PWMs, to
distinguish them from PWMs obtained with other experi-
ments or with a different approach.

RESULTS

Outline of the method

The main objective of this work is to predict the PWM of a
TF of the C2H2-ZF family from a complex structure of the
TF/DNA interaction. Briefly, we score the interaction with
statistical potentials, a mathematical formulation of the ob-
served frequency of contacts between amino acids and dinu-
cleotides (i.e. named triads). We use these potentials to rank
DNA sequences potentially bound by the TF and use the
top scoring sequences to calculate its PWM.

To calculate the statistical potentials we require a large
population of contacts, otherwise the potentials may be
too sparse. To overcome this limitation, we have developed
a computational approach that increases the amount of
available contacts with non-structural experimental infor-
mation gathered for the C2H2-ZF family. Figure 1 shows
a flowchart of the method, from the calculation of statis-
tical potentials (at the top) to the prediction of the PWM
(at the bottom). The first step (1) is to calculate the con-
tacts between amino acids and dinucleotides of all non-
redundant TF–DNA complex structures of the C2H2-ZF
family in PDB, as in Fornes et al. (37). Contacts and their

http://sbi.upf.edu/C2H2ZF_repo
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Figure 1. Flowchart of the approach. The flowchart follows three main tasks: i) steps 1–3 to generate the statistical potential using information from
Protein Data Bank (PDB) and experiments of bacteria-one-hybrid (B1H); ii) steps 4–6 to build the PWM of a sequence or a structure of a TF of the
C2H2-ZF family; and iii) step 7 to compare the PWM of a TF of the C2H2-ZF family with its motif in JASPAR. Steps are numbered and encircled,
following the description in the main text. Input data for the approach is colored in orange, scripts for the construction of the statistical potential in blue
and scripts for the construction of the PWM in green.

specific features are stored as triads and their frequencies
are used to calculate the statistical potentials (step 2). To
increase the amount of available contacts, we transform the
bacterial-one-hybrid (B1H) data from Persikov et al. (21) as
follows (step 3): first we select the hexamer core amino acid
sequences of Zif268 C2H2-ZF domains 2 and 3 (F2 and F3,
respectively) that bind a specific 3 bp of DNA with sufficient
affinity. Second, for each hexamer, we model a balanced set
of contacts by substitution of the hexamer amino acids and
its DNA bound sequence(s) in structural models of Zif268
(see details in ‘Materials and Methods’ section and Sup-
plementary Data). Finally, the resulting contacts are used
to recalculate the frequencies and statistical potentials from
step 2.

To predict the PWM of a C2H2-ZF protein we require
either its sequence or its complex structure with DNA. If
starting from the sequence (step 4a), we model the complex
structure of its interaction with DNA. Depending on the
number of templates used, this step may produce multiple
structural models. Each generated model follows step 4b. If
starting from the structure (step 4b), we replace the DNA
of the structure by all possible DNA sequences of the same
length (we use a heuristic approach for long sequences to
reduce the computational cost, see supplementary) and ap-
ply the statistical potentials to score the contacts of the TF
with each replaced DNA. Scores are normalized between 0
(for the worst binding) and 1 (for the best binding). In step
5, we rank all the replaced DNA sequences by the normal-
ized scores and select the top ones (with normalized score
higher than 0.95) to build an ungapped multiple sequence
alignment (MSA). In step 6 the MSA is converted into a

PWM (in MEME format). To validate the approach, we
perform the comparison with experimental PWMs derived
experimentally. Specifically, out of 40 TFs from JASPAR
(40) with three C2H2-ZF domains, we model 29 with mul-
tiple templates (step 4a). Then, we predict the theoretical
PWM of each structure (step 4b). We use TOMTOM (46)
to compare the JASPAR PWM of a TF with the theoretical
PWMs obtained for the different models of that TF (step
7).

Analysis of the statistical potentials

We have constructed several statistical potentials to describe
the interaction between the C2H2-ZF domains (F2 and F3
of Zif268) and the DNA. We have applied a Z-score modifi-
cation (see ‘Materials and Methods’ section and further de-
tails in Supplementary Data) on top of the classical defini-
tion of potential (51) (named PAIR). As an example of sta-
tistical potential, we have selected the interactions between
asparagine (Asn) with dinucleotide guanine-cytosine (GC)
and arginine (Arg) with dinucleotides adenine-guanine
(AG) and cytosine-thymine (CT). We selected these two
residues because Arg is a classical amino acid positively
charged found involved in unspecific protein DNA contacts,
while Asn is a polar residue with specificity for some ni-
trogenous bases. Figure 2A–D shows the PAIR and ZPAIR
potentials between Asn and the dinucleotide with bases GC
in finger domains F2 and F3. This example shows that
the Z-score function preserves the optimum shortest dis-
tance, but different between domains F2 and F3. Figure
2E–H shows the ZPAIR potential of Arg interacting with
dinucleotides with bases AG and CT. Supplementary fig-
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Figure 2. Statistical energy profiles PAIR and ZPAIR obtained with F2 and F3 domains. (A) Profile of Asn–GC PAIR score using F2. (B) Profile of Asn–
GC ZPAIR score using F2. (C) Profile of Asn–GC PAIR score using F3. (D) Profile of Asn–GC ZPAIR score using F3. (E) Profile of Arg–AG ZPAIR
using F2. (F) Profile of Arg–CT ZPAIR using F2. (G) Profile of Arg–AG ZPAIR using F3. (H) Profile of Arg–CT ZPAIR using F3.

ures showing the potential PAIR and ZPAIR for all amino
acids and dinucleotides can be accessed in http://sbi.upf.
edu/C2H2ZF repo. We use a set of hexamer sequence-
fragments yielding affinity percentiles higher than 90, 75
or 50% to construct the potentials. We observe a relatively
small difference using either 90, 75 or 50% affinities for dis-
tances longer than 10A. We also observe that the potential is
symmetric for the reversed dinucleotide (i.e. the potential re-
sulting for the interaction of Arg with AG in Figure 2E and
G is the same with CT in Figure 2F and H). However, the
finger-domain has the ability to distinguish forward and re-
verse dinucleotides depending on structural and topological
features of the DNA helix. In previous works we already de-
veloped a topological-dependent potential named ES3DC

(see details in Supplementary Methods and in Fornes et
al. (37)). The limitation of such specific potential is the
completeness of the dataset, as the large number of com-
binations to be sampled is very high and thus requiring a
large number of observations. The use of experimental data
from B1H is a good opportunity to populate many triads
in close distance (shorter than 20 Å) between the finger do-
main and the DNA binding site (21,49). Figure 3 shows the
increase of different types of contacts produced with the
help of B1H data with respect to those obtained only with
structures of the C2H2-ZF family in PDB (47). Only some
topological features of both DNA and protein conforma-
tion highlight the increase, as they are specific of the C2H2-
ZF family. As an example, Figure 3 shows the granular-

http://sbi.upf.edu/C2H2ZF_repo
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Figure 3. Heatmap plots of the number of amino acid––dinucleotides and their environments (etriads) at distance shorter than 30A in a logarithmic scale.
Detailed view of a cell of the heatmap is shown in the right side of each heatmap. Each square inside the cell shows the number of extended-triads (in
logarithmic scale) for a specific amino acid––dinucleotide (the example uses valine, Val and adenosine-cytosine, AC) and their environments. Amino acid
environments are: hydrophobicity (P as polar, N non polar), surface accessibility (E if exposed, B if buried) and secondary structure (E for �-strand, H for
helix and C for coil). Dinucleotide environments are: type of nitrogenous bases (U for purine, I for pyrimidine), closest DNA strand (F for forward, R for
reverse), closest DNA groove (A for major, I for minor) and closest chemical group (B if phospho-ribose backbone atoms, N if nucleobase). (A) Extended-
triads obtained from PDB structures. (B) Extended-triads obtained from PDB structures and B1H experiments of the F2 domain. (C) Extended-triads
obtained from PDB structures and B1H experiments of the F3 domain. A detailed analysis of panels A, B and C is available in the web repository
(http://sbi.upf.edu/C2H2ZF repo).

http://sbi.upf.edu/C2H2ZF_repo
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ity of features covering the interaction between valine and
adenosine-cytosine. The conclusions are similar for other
interactions: (i) the B1H data help to populate certain spe-
cific features; and (ii) the specificity is derived mostly from
B1H data rather than from PDB structures (this is caused by
the large amount of information extracted from the experi-
ment in comparison to the amount of structures available).

Prediction of PWMs in domains F2 and F3 of Zif268

To evaluate the quality of the theoretical PWMs we com-
pare them with the results of B1H experiments (21). We
construct two types of PWMs: hexamer-specific PWMs and
trinucleotide-specific PWMs. Hexamer-specific PWMs are
the experimental PWMs as defined in ‘Materials and Meth-
ods’ section, obtained by aligning all DNA trinucleotides
targeted by the same amino acid hexamer. Trinucleotide-
specific PWMs are artificial PWMs containing the combi-
nation of 3 nt (64 in total) with 100% weight in each specific
position. These trinucleotides are flanked by nucleotides
specific of each assayed zinc finger (G and A for F2 and
two A for F3).

We create the hexamer-specific and theoretical PWMs
with the DNA binding sites of the hexamer sequences tested
by B1H. For each hexamer fragment of a finger domain, we
select the binding site with highest affinity in the B1H ex-
periment and assume that these are the three bases binding-
specific of the hexamer. Theoretical PWMs are obtained by
combining homology modeling and Z-scores ZES3DCdd .
Structural models of the variants of Zif268 are constructed
using 23 different templates (see Supplementary Data).
Hence, there are 23 theoretical PWMs for each hexamer se-
quence of amino acids.

When comparing the theoretical PWM with the
trinucleotide-specific PWMs we check the ranking position
of the correct trinucleotide-specific PWM. When compar-
ing with the experimental PWMs we use the number of
nucleotide-matches to evaluate the quality. We define the
number of nucleotide-matches as the number of positions
where two compared PWMs share the same nucleotides
with highest frequencies. Since we are focused on the
trinucleotides of the binding site, we are only interested in
the number of central nucleotide matches, which ranges
between 0 and 3.

Using an affinity threshold of 90%, we find 131 hexam-
ers for F2 and 82 for F3 with at least one theoretical PWM
ranking the correct binding site on the top. This represents
at least one hexamer sequence in 28 (for F2 domain) and
32 (for F3 domain) trinucleotide combinations out of 64.
Table 1 shows the number of hexamers with three, 2 or 1-
nt-matches with the hexamer-specific PWM for each trinu-
cleotide in F2 domain. Supplementary Table S1 shows the
results for domain F3 and additional details. Considering 3
or 2-nt matches, we are able to match at least one theoreti-
cal PWM for 71% of the hexamer variants in F2 and 74% in
F3. This proves that for most hexamers we are able to find
a theoretical PWM with an almost perfect match with the
corresponding hexamer-specific PWM. However, the selec-
tion of the template (or templates) is crucial to predict the
specific binding site of a single domain. The comparisons
of PWMs of all hexamer sequences tested in F2 and F3 do-

mains with affinity percentile higher than 90% is shown in
Supplementary Table S2.

The results obtained using affinity percentile higher than
75 and 50% are similar to using 90%. Around 65–75% hex-
amers of F2 domain (and 75–85% for F3 domain) have 3
or 2 nt-matches between the theoretical and the hexamer-
specific PWM. Details are shown in Supplementary Ta-
bles S1 and 2. The comparison of all PWMs are shown
in http://sbi.upf.edu/C2H2ZF repo. The fact that the qual-
ity of the theoretical PWMs is the same for the range of
affinity percentiles analyzed (from 50 to 90%) suggests that
our method is not able to distinguish high from low affinity
binding sites; but it allows to identify the TF binding site
regardless of the affinity (see Annexure 1 in Supplementary
Material and Figure S1).

In Figure 4 we show the comparison of some examples of
hexamer-specific and theoretical PWMs (all theoretical and
experimental PWMs and their comparisons can be retrieved
from http://sbi.upf.edu/C2H2ZF repo). Among these ex-
amples we observe some theoretical PWMs that, although
different than their expected binding sites, share common
trends of the nucleotide frequencies of the experimental
PWM. For example, for the binding site ATG in domain
F2 by the SQSGCN hexamer (top left PWM in Figure 3A),
we observe similar nucleotides underlying lower frequen-
cies between theoretical and experimental PWMs. Similarly,
other examples are shown in Figure 4 with combinations of
nucleotides of binding sites displaying nucleotide matches
with underlying lower frequencies.

Examples of binding site prediction of C2H2-ZF transcrip-
tion factors

We compare the theoretical PWMs with the PWMs re-
trieved from JASPAR (40) for several TFs. We use some
members of the C2H2-ZF family, composed by three finger-
domains, with a known PWM (coded as motif) in JASPAR
(40), for which the structure of the complex with DNA is
known or it can be modeled, to obtain the theoretical PWM
(see Supplementary Table S3 and other details in Supple-
mentary Material). We obtain two PWMs using statistical
potentials ZES3DCdd calculated with variant sequences in
F2 domain (ZES3DCF2) and in F3 (ZES3DCF3) of the
B1H experiment. We compare the theoretical PWMs of
each TF using all contacts under 30Å, then we repeat the
comparison by decreasing this threshold down to 15Å.

Figure 5 shows the JASPAR PWMs of some selected TFs,
compared with the theoretical PWMs calculated with a dis-
tance threshold of 30 Å (see Supplementary Table S4 for
more details). All theoretical PWMs and structural models
can be downloaded from http://sbi.upf.edu/C2H2ZF repo.
We are able to find at least one PWM significantly similar
to its motif in JASPAR (P-value < 0.05 with TOMTOM)
for almost all TFs (27 out of 29). The PWMs of some TFs
are compared with more than one possible motif in JAS-
PAR, often associated by some relationship in evolution (i.e.
among orthologs and paralogs of different species, see de-
tails in Supplementary Data).

We further test if the similarity of the TFs with the se-
quence of Zif268, from which the statistical potentials are
derived, affects the quality of the results. We calculate the

http://sbi.upf.edu/C2H2ZF_repo
http://sbi.upf.edu/C2H2ZF_repo
http://sbi.upf.edu/C2H2ZF_repo
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Table 1. Results of the prediction of PWMs in domain F2

BS 3M 2M 1M #HEXAMER TEMPLATE HEXAMER <M> RANK TOP

AAA 0 3 1 4 5ke9 A SPGSHN 0.65 2 0
AAC 1 7 24 32 2wbu A WHSSVH 0.66 1 1
AAG 0 5 10 15 5ke9 A RSDYTM 0.55 4 0
AAT 4 3 1 8 1g2d C FQSNVS 0.39 1 3
ACA 1 8 16 25 1a1i A QQSTSR 0.68 4 0
ACC 0 8 0 8 5ke8 A HPSTSH 1.04 4 0
ACG 4 21 0 25 1a1j A WASSSN 0.80 1 10
ACT 3 37 10 50 1p47 A FSSSSA 0.79 1 3
AGA 0 2 0 2 1zaa C SSGSWN 0.70 1 1
AGC 7 4 0 11 5ke8 A WHSSIH 0.74 1 6
AGG 0 22 7 29 5ke6 A RKDHTN 0.82 3 0
AGT 0 8 14 22 1a1i A YHSNLS 0.31 2 0
ATA 0 1 0 1 1a1i A NAHNCL 0.37 9 0
ATC 1 6 5 12 5ke7 A SSSGLH 0.68 1 1
ATG 0 1 11 12 4r2c A WHSGLN 0.40 9 0
ATT 0 7 11 18 5keb A FQSGSS 0.29 1 1
CAA 0 1 1 2 1zaa C TKGNTQ 0.57 3 0
CAC 0 11 0 11 5keb A DPSNRS 0.94 2 0
CAG 0 15 16 31 1p47 A TKWNTS 0.75 2 0
CAT 3 4 5 12 5ke7 A AQSNSS 0.57 1 3
CCA 0 3 0 3 5keb A QLSTNY 0.80 4 0
CCC 3 0 0 3 1zaa C TRRDRR 2.42 1 3
CCG 1 1 0 2 1zaa C RKDTRD 1.78 1 1
CCT 0 7 0 7 1zaa C RKQDSR 1.25 1 1
CGA 2 1 0 3 2wbu A QYGHST 0.77 1 2
CGC 0 3 0 3 5keb A SRPNLG 1.59 2 0
CGG 22 8 1 31 5keb A RASHSD 1.43 1 23
CGT 0 20 3 23 5keb A MSHHRD 0.99 2 0
CTA 1 2 0 3 4r2c A SQSGCQ 0.78 1 1
CTC 3 0 0 3 1p47 A SRSGCH 1.04 1 3
CTG 0 4 1 5 1p47 A RKFIIE 0.79 2 0
CTT 0 1 7 8 5ke9 A YRHVSD 0.76 1 1
GAA 1 0 9 10 1jk1 A TKGNTR 0.56 2 0
GAC 1 17 1 19 1zaa C WASSSR 0.95 3 0
GAG 0 35 3 38 5keb A TRFNLR 0.78 1 1
GAT 0 8 1 9 4r2a A FASNRR 0.65 2 0
GCA 1 2 0 3 5ke9 A QLATNR 0.97 3 0
GCC 7 0 0 7 5keb A WLTNRR 2.21 1 7
GCG 9 15 0 24 5ke9 A RRDTAN 1.41 1 20
GCT 11 4 0 15 5ke8 A FRSTSR 0.97 1 11
GGA 0 6 2 8 1a1i A QLSTKY 0.74 4 0
GGC 4 1 0 5 2kmk A WQSSIK 1.10 1 1
GGG 19 27 0 46 5ke7 A RNAHLN 1.32 1 20
GGT 0 8 3 11 5ke7 A FQSNLR 0.84 1 1
GTA 0 2 2 4 1a1h A TKGSTR 0.71 7 0
GTC 0 7 0 7 2kmk A HASSSR 0.84 5 0
GTG 0 38 4 42 5ke9 A RKAITD 0.87 4 0
GTT 0 5 1 6 5kea A FLSSSR 0.72 1 2
TAA 1 0 1 2 1zaa C MYIDYY 0.91 1 1
TAC 0 2 3 5 5ke7 A LKGNTK 0.71 7 0
TAG 2 1 5 8 5ke9 A RKWTDL 0.53 1 2
TAT 0 6 4 10 5ke9 A WLTSNV 0.26 9 0
TCA 0 0 2 2 5ke7 A HNIYHH 0.37 23 0
TCC 0 6 0 6 5ke8 A TKASTP 1.26 6 0
TCG 1 3 0 4 1a1h A RKESVI 1.31 5 0
TCT 0 7 4 11 5keb A WSSSAI 0.81 3 0
TGA 1 1 1 3 5ke9 A WASSHY 0.49 1 1
TGC 0 2 0 2 2kmk A WPNSKA 0.78 2 0
TGG 0 37 11 48 1a1k A RNAHSE 0.81 3 0
TGT 0 17 23 40 5ke9 A WASSSS 0.27 5 0
TTA 0 1 0 1 5keb A CIHYNN 0.35 17 0
TTC 0 2 0 2 5ke7 A SASGSH 0.62 3 0
TTG 0 5 6 11 5keb A RKWTML 0.69 2 0
TTT 0 0 3 3 5ke9 A YRWIRD 0.36 4 0

BS is the trinucleotide combination of the DNA binding site. 3M, 2M and 1M show the number of hexamers with at least one theoretical PWM having 3,
2 or 1 nt matches with the experimental PWM, respectively. #HEXAMER is the total number of hexamers having as main binding the trinucleotide of the
row. HEXAMER and TEMPLATE show the hexamer sequence and the code of the structure used as template for the theoretical PWM, this combination
yields the highest match of nucleotides of the corresponding trinucleotide in the same row. <M> shows the average ratio of nucleotide matches of all
theoretical PWMs and hexamer sequences with the same binding site of the row. RANK shows the best ranking position of the correct trinucleotide-
specific PWM among all hexamers with the same binding site of the row. TOP shows the number of hexamers with at least one theoretical PWM ranking
on the top the correct trinucleotide-specific PWM of the row.
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Figure 4. Comparison of PWMs. We compare theoretical PWMs with experimental PWMs of the same hexamer sequence variants. For each comparison
we show the amino acid hexamer sequence (highlighted in bold) used to calculate the experimental PWM, the DNA binding site with highest affinity of
the hexamer sequence (highlighted in red) and the PDB code of the structure used as template to obtain the theoretical PWM. (A) Comparison of PWMs
for domain F2. (B) Comparison of PWMs for domain F3.

similarity as the percentage of identical residues aligned
(%id) between the sequence of the TF and the sequence of
Zif268. Certainly, the theoretical PWMs of TFs very simi-
lar to Zif268 are significantly similar to their motif in JAS-
PAR. However, we also obtain theoretical PWMs for se-
quences with low similarity with Zif268 that significantly
match with their corresponding motif in JASPAR (see Sup-
plementary Data). Similar conclusions are obtained when
comparing the sequences of the TFs and the templates used
to construct their PWMs. The bias on the statistical po-
tential, caused by structures of close homologs to each TF
query is studied in the supplementary. The main conclusion
is that the bias is avoided by using contacts shorter than 18Å
to construct the theoretical PWMs. We test for each TF the
capacity to predict a motif in JASPAR without biases us-
ing a modification of the statistical potentials. We generate
specific statistical potentials for each TF by removing the

contacts of close homologs (%id > 50). After avoiding the
bias, we are still able to find at least one PWM significantly
similar to its motif in JASPAR for almost all TFs. Also, be-
tween 11 and 14 TFs have more than 50% of the theoretical
PWMs significantly similar with their motif in JASPAR, be-
ing most of them the same TFs whether close homologs are
removed or not in the statistical potential (see Supplemen-
tary Table S4).

Not all models produce PWMs significantly similar with
their corresponding motifs. For some TFs this can be ex-
plained by the low number of models produced: only one
model is constructed with the length of three–four finger
domains for Q86T24 and Q8GYC1. A detailed analysis
shows that many theoretical PWMs, not significantly simi-
lar with their motif, are still able to match more than 50%
nucleotide-matches with their JASPAR motif. The average
ratio of identic nucleotides using all models varies between
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Figure 5. Comparison between theoretical PWMs of some members of the C2H2-ZF family and their motifs in JASPAR database. We use ZES3DCF2
statistical potentials for each TF with contacts under 30 Å, using all PDB structures of the C2H2-ZF family or avoiding those of its close homologs. (A)
and (B) show examples rich on G and C nucleotides, while in (C) are shown examples rich on A and T nucleotides. JASPAR motifs are shown at the top
of each comparison. PDB codes of the templates used to construct the theoretical PWMs are also indicated. As a quality criterion of the comparison, the
right top margin of each predicted logo includes the P-value calculated with TOMTOM. (A) Examples of TFs P08046 and P18146. (B) Examples of TFs
Q06889, P11161, Q05215 and P08152. (C) Examples of P32432, Q9FFH3 and Q8H1F5.

60 and 88% for the majority of TFs (see Supplementary Ta-
ble S4), and it is only slightly reduced after avoiding the bias.

Application to CTCF

We apply statistical potentials to predict the binding pref-
erences of human CTCF. The DNA binding domain of
human CTCF is formed by 11 zinc-finger domains of the
C2H2 family (residues 266–577). Different DNA binding
motifs have been proposed for this domain: one for the cen-
tral part, flanked by one upstream and one downstream
motifs (52). The central part of human CTCF binding do-
main has a well-defined motif in JASPAR (MA0139.1).
The structure of the complete sequence of human CTCF is
unknown. However, several structures have been obtained

by crystallography of different fragments bound to DNA
(structures with PDB codes 5K5H, 5K5I, 5K5J, 5T00,
5T0U, 5YEL, 5YEH, 5YEF, 5UND and 5KKQ). We con-
struct a structural model of the almost complete sequence
of the binding domain of human CTCF (see Supplementary
Figure S4). The model is constructed by superimposition of
the structures 5T0U (zinc-finger domains 2–7) and 5YEL
(zinc-finger domains 6–11), using the overlapping fragment
of fingers 6 and 7 and removing the redundant amino acids
and nucleotides from 5YEL (amino acid fragment from 455
to 512, highlighted in red in Supplementary Figure S4).
Finger domains are shown in the protein sequence align-
ment and in the alignments of DNA sequences taken from
the PDB structures. The C-terminal domains, taken from
5YEL, bind on the 5′ region, while the N-terminal domains
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Figure 6. Comparison between experimental and theoretical PWMs of CTCF. The PWM on top of the figure is the experimental PWM, retrieved from
the JASPAR database (MA0139.1). The rest of logos show the theoretical PWMs obtained with the model or the structures selected from PDB. The PDB
code and the numbers of the zinc-finger domains corresponding to the human CTCF DNA-binding domain are shown on the right side.

from 5T0U bind on the 3′ site, thus the alignment of the
DNA fragment is shown in reverse orientation with respect
to the finger-domains.

Following our previous approaches, we obtain the theo-
retical PWM with each structure using contacts up to 30Å
and the potentials ZES3DCF2 and ZES3DCF3. The PWM
based on experimental data is retrieved from JASPAR, with
profile motif MA0139.1 and compared with the theoret-
ical PWMs (see details in Supplementary Table S5). We
show in Figure 6 the logos of the JASPAR profile aligned
with the logos of the theoretical PWMs. We observe a pro-
file pattern preserved for many theoretical PWMs in which
we recognize a central common region that corresponds
with the JASPAR profile MA0139.1. This is the core pro-
file of CTCF, located between nucleotides 8 and 22 in the
forward chain (oriented form 5′-3′) of the modeled struc-
ture. Because structures, such as codes 5YEL or 5UND are
formed mostly by zinc-finger domains at the C-terminal re-
gion, the theoretical PWMs constructed with them match
incompletely the core profile. Consequently, it is more diffi-
cult to align these PWMs, resulting in lower scores (higher
P-values of TOMTOM) and small overlap. Interestingly,
the profiles obtained with PDB codes 5UND, 5YEL and
the 5′ site of the profile of our model, identify a pattern that
has some similarities with the upstream motif mentioned by
Nakahashi et al. (52). Motifs of flanking sites recognized by
finger-domains 1–2 and 8–11 are not well-defined. Despite
they are important for the recognition of the binding sites of
CTCF, the current tools for motif discovery have not unrav-
eled both downstream and upstream profiles. Consequently,
we cannot test the quality of the alignments between the

theoretical PWMs and many of the proposed motifs of the
flanking regions, because there is no consensus.

DISCUSSION

We have developed a method to predict the binding pref-
erences of C2H2-ZF proteins using their structures to ob-
tain one (or several) PWMs. We offer the use of this ap-
proach with a server. The method requires the structure of
the C2H2-ZF protein or the structures of the templates to
model it. The number of models depends on the number of
templates. Consequently, the number of theoretical PWMs
is larger for sequences with many templates than for those
with few and this affects the capacity of the prediction.

Our analyses show that the percentage of nucleotide
matches in binding sites of single-domains between theo-
retical and experimental PWMs is independent of the ex-
perimental affinity percentile. Therefore, although we can
roughly distinguish binding from non-binding sites, we can-
not distinguish intermediate degrees of affinity. This is rel-
evant on the prediction of the effect of mutations affecting
the binding strength of zinc-finger domains.

Given that our method provides several theoretical
PWMs for the same TF, it entails an additional problem:
selecting the correct or best PWM. However, rather than
finding the best PWM from a set of theoretical PWMs, we
bring the opportunity to select one among many potential
solutions and help finding the binding site of a TF in a DNA
sequence. We proof that, for a relevant number of TFs that
can be modeled, the number of PWMs significantly simi-
lar to an experimental PWM is larger than 50% (and the
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proof is valid after removing biases due to the similarity be-
tween the query sequence and the dataset used to construct
the prediction). Therefore, by scanning with several theo-
retical PWMs of a TF, the majority of regions detected and
predicted to bind will hit around the right location of the
binding site.

Furthermore, our approach also suggests that perhaps
the same TF recognizes more than one binding site de-
pending on its conformation. When constructing theoret-
ical PWMs with different structures, each structure is a
snapshot of the interaction between the TF and the DNA.
Therefore, by using many structures we introduce the dy-
namic nature of proteins as an additional feature. This can
be useful for C2H2-ZF proteins that may interact with
DNA using different conformations or different arrange-
ments of zinc fingers, such as CTCF. It is known that CTCF
has a central binding motif plus two flanking motifs, one
in downstream and another upstream (52). CTCF binding
sites display different combinations of downstream-central-
upstream motifs that can be spaced by a variable number of
nucleotides. Therefore, searching binding sites with many
PWMs obtained from different conformations of CTCF–
DNA complexes may be more informative of the whole con-
formational space of CTCF than a single model.

To sum up, we have developed a computational tool to
predict the DNA binding preferences of C2H2-ZF proteins.
With the help of homology modeling, we are able to predict
PWMs for TFs for which we only know their amino acid
sequence. We have tested our method by comparing theo-
retical PWMs with their motifs in JASPAR. We have used
our approach to test PWM predictions of different regions
of human CTCF and predicted a PWM to cover domains
2 to 11 of the DNA binding domain of CTCF (from down-
stream to upstream motifs). We offer a repository with the
results and a server to calculate the PWM using the struc-
ture of a TF as input (see http://sbi.upf.edu/C2H2ZF repo).
We also offer a server to model a TF–DNA complex struc-
ture with an input sequence (see details in Supplemen-
tary Data). In a thorough analysis of the potential number
of C2H2-ZF TFs from Uniprot eukaryotic reference pro-
teomes (one protein per gene) that would benefit from this
approach, we have detected 134 399 proteins (about 72%).
Thus, our method could potentially be applied to more than
250 000 out of 353 167 UniProt proteins with a predicted
C2H2-ZF domain by PROSITE (53) (see more details in
Supplementary Data). We think our approach may also be
applied to study the potential effect of mutations in the
DNA binding sequence. However, because of the lack of
specificity on the prediction of binding affinities, further re-
search is still needed on this goal. In the near future, we plan
to extend this approach to other TFs with additional exper-
imental information from B1H or other similar experiments
collected in Cis-BP database (54).

SUPPLEMENTARY DATA

Supplementary Data are available at NARGAB Online.
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